
CILogon DB Service
Access to CILogon’s Persistent Store

Motivation
Current access is through the PHP layer which in turn makes a call to a Perl database application.
This is causing some very noticeable performance issues. The main reasons are

● The PHP library creates a completely new Perl interpreter for each call. This has a fixed
overhead of .2 sec

● The Perl application requires roughly .5 seconds to create a connection to the database.
No connection pooling is possible because of issue #1, so regardless of the database’s speed,
there is a fixed .7 second delay for each call to the database. The net effect is an unacceptably
slow web application.

Proposed solution
The Java delegation application manages all of its state with connection pooling and caches.
Although there is a small initial cost for initialization whenever Tomcat is restarted (< 3 sec.) ,
access afterwards runs consistently in 20ms - 30 ms range. This is an improvement over the
current method by an easy factor of 10. It makes sense to expose this to the rest of the CILogon
Service itself. Under Tomcat, each web application with its various servlets share a common
instance. Rather than set up a separate dedicated web application to serve this, it will be a simple
servlet running under the delegation application. The main reason for this is that otherwise there
will be both threading and latency issues involved in updating and accessing information which
would be very difficult to resolve.

Security and access
For performance reasons, access will be via http (no SSL) to Tomcat directly on port 8080
(avoiding the translation from Apache through the AJP connector). Since this in effect would make
everything in the database world readable, only localhost access will be permitted.
The path to the database servlet will be http://localhost:8080/delegation/dbService.

The API itself
All access will be via HTTP Get. Technically we should only allow HTTP Post on requests which
may result in changes to the server (e.g. a creating a user) and HTTP Get for information requests,
however, this would make it awkward to use. The aim is to make it simple enough that clients can
hand-code the request and parse the result without having to resort to a library or other mechanism
to do so.

Basic Operation

Making a request
Every request will go to the same address:

 http://localhost:8080/delegation/dbService.
Requests are standard HTTP GET with key=value pairs. One of these is required, “action=XXXX”,
where XXXX determines what is to be done by the server. The remaining key/value pairs are
parameters for the call. All arguments in a post or get will be URL encoded but key/value pairs may
be in any order. Required arguments must be present or an error will be returned. Generally
(except for a list of IDPs) repeated arguments will cause a duplicate argument message to be
generated.

Format of a response from the server
The general serialized form for an object (which is always the body of the response and is
urlencoded) is:
 status=XXX
 key1=value1
 key2=value2
 …
where keys may be repeated for multi-valued objects. Each key/value pair is followed by a
linefeed, except the final one. If a value is missing, it will still be present in the form “key=” (no
value. Each section below detailing an API call will list what are and are not acceptable values.
The status line is always present. The next section details the possible values.

Status Codes and Error Conditions
It may occur that there are errors during the processing of a request, e.g. if the parameters are
incorrect. Rather than confuse server errors with data errors, we follow the following policy: Only
actual errors with the servlet itself will result in an HTTP status code different than 200. E.g. a 404
Not Found error can only have come from the web server itself and means there is a problem with
the request rather than meaning, say, that a user was not found. The first line of each response
(and the only required line) is the status. This will be recorded in the body of the response
according to the following table. All operations except saving the list of IDPs can return a duplicate
parameter exception. It is not the task of this servlet to disambiguate or merge conflicting requests.
Duplicate arguments are in general not allowed for any argument, including optional ones. The
exception to this rule is setting a list of IDPs. All operations can return a missing parameter error for
a required parameter.

Note: There is an appendix at the end of this document with various tables sorting these for quick
reference.

Value Decimal Hex Comment

OK 0 0x0 Normal return

ActionNotFound 1 0x1 No such action is supported by this
service. Normally this indicates that
the action value was mis-typed.

NewUser 2 0x2 A new user was created

UserUpdated 4 0x4 An existing user was updated

UserNotFound 6 0x6 The requested user was not found.
Returned by hasUser,
getLastArchivedUser, removeUser.

UserExists 8 0x8 The requested user exists. Returned
by hasUser.

IDPChanged 10 0xA User was found but the IDP changed.

UserExistsError 1048481 0xFFFA1 An attempt to get a nonexistent user
failed.

UserNotFoundError 1048483 0xFFFA3 An attempt to update or otherwise
access a nonexistent user failed.

TransactionNotFound 1048485 0xFFFA5 No such transaction for the given
temporary credential was found

IDPSaveFailed 1048487 0xFFFA7 Saving the list of idps failed.

DuplicateParameterFound 1048561 0xFFFF1 A duplicate argument was supplied.

InternalError 1048563 0xFFFF3 Some error internal to the server
occurred during processing. Consult
the server logs.

SaveIDPFailed 1048565 0xFFFF5 There was a problem saving the list of
IDPs.

MalformedInputError 1048567 0xFFFF7 An input was of the incorrect format.
E.g. an illegal uri or a string that
cannot be parsed into an integer.

MissingParameterError 1048569 0xFFFF9 A required argument was not found.

NoRemoteUser 1048571 0xFFFFB Calls that require the remote user will
fail with this message if it is not
supplied.

NoIdentityProvider 1048573 0xFFFFD Calls that require the identity provider
will fail with this message if it is not
supplied.

Transaction not found 65537 10001 No transaction with the given
identifier could be found

Expired token 65539 10003 The token for this request has expired.

Create transaction failed 65541 10005 General exception when a transaction
cannot be created

Unknown callback 65543 10007 The supplied callback id not in the list
of registered callbacks

Client id missing 65545 10009 No client identifier has been supplied
with this request

No registered callbacks 65547 1000A The client has no callbacks registered.
(Normally this implies an incomplete
registration)

Unknown client 65549 1000C The identifier does not match any
client

Unapproved client 65551 1000E This client has been registered but has
not yet been approved.

Date formatting
As with the rest of the system, all dates are ISO 8601 compliant of the form
 yyyy-mm-ddThh:mm:ss.xxxxZ
Where the infixed T prefixes the time and the final Z indicates this is GMT. E.g.,
 2010-11-17T17:09:19.692Z
Dates are needed for instance on user and archived user objects.

The API Calls

checkUserCode(user_code)
What’s it do: This will take the user_code and verify that it is currently active.

Request key/value pairs.

Key Value Comment

action checkUserCode Required

user_code Required

Response key/value pairs.

Key Value Comment

status Ok
missing parameter
service unavailable
transaction not found
expired token

The service unavailable
response is if the service does
not have the device flow
enabled.
Expired token refers to the auth
grant for the transaction.

client_id The client id

grant The id for the transaction This is base 32 encoded

scope Scopes, if any, in the initial
request

This is a blank delimited list

user_code The user_code passed in This helps the requester identify
this response

See also: userCodeApproved

createTransaction
What’s it do: This creates the transaction after authorization. This returns the code and other
information.

Request key/value pairs.

Key Value Comment

action createTransaction Required

client_id The client identifier

scopes The scopes passed in the initial
request.

state Opaque string

Response key/value pairs.

Key Value Comment

status Ok
missing argument
missing client id
no scopes
malformed scope
malformed input
unknown client
unapproved client
create transaction failed
internal error

code The authorization grant This is base 32 encoded

scope JSON array This is the set of scopes that the
client is actually allowed. It
may not be the same as what
was passed in.

state Echos back passed in scope This is so clients can set a value
to track transactions

See also: setPortalParameters, setTransactionState, setTwoFactorInfo, getTwoFactorInfo

getAllIDPS
What’s it do: Get the list of all current IDPs
Example:
Request:http://localhost:8080/dbService?action=getAllIdps

Body of Response:
status=OK
idp_uid=urn%3Amace%3Aincommon%3Auchicago.edu
idp_uid=urn%3Amace%3Aincommon%3Aidp.protectnetwork.org
idp_uid=urn%3Amace%3Aincommon%3Albl.gov

Request key/value pairs

Key Value Comment

action getAllIdps Required.

Response key/value pairs

Key Value Comment

status OK, ActionNotFound

idp_uid a url encoded identity
provider

There will be many of these
normally, one per line.

See also: setAllIDPs

getClient(client_id)
What’s it do? This will retrieve the information for a given client.

Request key/value pairs

Key Value Comment

action getClient Required

client_id The unique client identifier

Response key/value pairs

Key Value Comment

status ok,
missing client id,
client not found

client_callback_uris Callback uris List is blank delimited.

client_creation_timestamp ISO 8601 date

client_email

client_home_uri

client_id

client_limited_proxies

client_name

client_refresh_lifetime lifetime in milliseconds

getLastArchivedUser
What’s it do: This will take the id of a user and return the last user archived under that id, if there
is one.

Note 1: The internal information about the archive (the date at which the user was archived) is not
returned. Just a user object. Also, users are archived as a matter of course when during the
getUser call, if the user’s information has changed. See the information under that entry.

Note 2: Archiving users was necessary for tracking revisions to serial strings – a requirement for
X509 certificates. As of May 2025, CILogon will no longer issue those and this call will be official
deprecated. It may still be called by some legacy code, but it should not be used in new code.

Request key/value pairs

Key Value Comment

action getLastArchivedUser Required.

user_uid The user’s unique identifier Required

Response key/value pairs

Key Value Comment

dn

email

eppn

eptid

first_name

idp

idp_display_name

last_name

oidc

open_id

remote_user

serial_string

status OK, DuplicateParameter,
ActionNotFound,
UserNotFoundError

user_uid

getPortalParameters
What’s it do: Gets a partial transaction (callback, name, etc.) based on the authorization grant
(aka the temporary credential). This is intended for getting basic information when the user is in the
process of logging in, not the entire transaction, which could be quite massive!

Request key/value pairs

Key Value Comment

action getPortalParameter Required.

oauth_token The temporary credential Required.

Response key/value pairs

Key Value Comment

status OK, ActionNotFound,
TransactionNotFound,
MissingParameter,
DuplicateParameter

cilogon_callback The callback uri

cilogon_failure The failure uri

cilogon_portal_name The name of the portal

cilogon_success The success uri

oauth_token same as argument

See also: createTransaction, setTransactionState, setTwoFactorInfo, getTwoFactorInfo

getTwoFactorInfo(user_uid)
What’s it do? This will retrieve any two factor information from the server for the given user id.

Request key/value pairs

Key Value Comment

action getTwoFactorInfo

user_uid user unique identifier

Response key/value pairs

Key Value Comment

status ok, user not found

two_factor string as per setter, this is assumed
to be an opaque string.
Omitted if no user
information found

user_uid user id Same as in the request.

See also: setTwoFactorState

getUser(user_uid)
Example:
Request:
http://localhost:8080/delegation/dbService?action=getUser&user_uid=http%3A%2F

%2Fcilogon.org%2FserverA%2Fusers%2F119

Body of response:
status=OK
remote_user=gaynor%40illinois.edu
idp=urn%3Amace%3Aincommon%3Auiuc.edu
idp_display_name=University+of+Illinois+at+Urbana-Champaign
first_name=Jeffrey
last_name=Gaynor
user_uid=http%3A%2F%2Fcilogon.org%2FserverA%2Fusers%2F119
email=gaynor%40illinois.edu
serial_string=A119
distinguished_name=%2FDC%3Dorg%2FDC%3Dcilogon%2FC%3DUS%2FO%3DUniversity+of+Illinois+
 at+Urbana-Champaign%2FCN%3DJeffrey+Gaynor+A119+email%3Dgaynor%40illinois.edu
create_time=2010-05-14T22%3A23%3A23.397Z
two_factor=sjkhsdkkfhsirandomStringishThingish

Request key/value pairs.

Key Value Comment

action getUser Required.

user_uid the unique id of the user Required.

Response key/value pairs

Key Value Comment

status OK, ActionNotFound
UserNotFoundError,
MissingParameter,
DuplicateParameter

create_time ISO 8601 formatted date field.

distinguished_name The DN as computed by the
server

email

first_name

idp

idp_display_name

last_name

remote_user

serial_string The serial string (e.g. A123)
as computed by the server

two_factor A string with two factor
information if available.
Omitted if none is found.

user_uid Identical to the argument

See also: getUser(remoteUser..), getUser(user_uid), getUserID, hasUser, removeUser

getUser(remoteUser|EPPN|EPTID|OpenID|oicd, idp,...)

Note: This version of getUser is actually a shortcut for one of
● creating a new user,

● fetching a user with given identifier and idp fields
● checking such an existing user, updating its fields and returning the result.

The identifier and idp are the only required arguments. Omitting the others will set them to being
empty, so all 6 parameters are always required. This means in particular this should be viewed as
an update to a user which happens to return the user too. If the user has changed, then it is
automatically archived, the most recent of which may be recovered with the getLastArchivedUser
call detailed below.

Request key/value pairs

Key Value Comment

action getUser Required.

email

eppn Required*

eptid Required*

first_name

idp Required.

idp_display_name

last_name

oidc Required*

open_id Required*

remote_user Required*

* = at least one of these must be included.

Response key/value pairs

Key Value Comment

status OK,ActionNotFound,
UserNotFound,
MissingParameter,
DuplicateParameter,
IDPUpdated

dn See above

email Identical to the argument

eppn Identical to the argument*

eptid Identical to the argument*

first_name Identical to the argument

idp Identical to the argument

idp_display_name Identical to the argument

last_name Identical to the argument

oidc identical to the argument*

open_id Identical to the argument*

remote_user Identical to the argument*

serial_string See above

two_factor Two factor information, if any
is found. Omitted otherwise.

user_uid

* = IF this is supplied as an argument, it will be identical. It is possible that other fields may be
returned as well. E.g. If both eppn and eptid are stored, you may request a user by their eptid only.
Then you would get that plus the stored eppn.

See also: getUser(user_uid), getUserID, hasUser, removeUser

getUserID
What’s it do: Given the at least one of the identifiers and the idp, this will return the internal
unique identifier for this user.
Examples:
http://localhost:8080/delegation/dbService?action=getUserID&remote_user=bob
%40foo.edu&idp=urn%3Amace%3Aincommon%3Auiuc.edu

http://localhost:8080/delegation/dbService?action=getUserID&eppn=bob%40foo.edu&eptid=https
%3A%2F%2Fidp.uni.edu.au%2Fidp%2Fshibboleth!https%3A%2F%2Fmanager.aaf.edu
%2Fshibboleth!Mza74xVcOOJ%2FI%2FZ3NFFY86%2BnfOk&idp=urn%3Amace%3Aincommon
%3Aaaf.edu

http://localhost:8080/delegation/dbService?
action=getUserID&open_id=bob2468%40myopen.com&idp=urn%3Amace%3Aincommon
%3Amyopen.com

Request key/value pairs.

Key Value Comment

action getUserID Required. Get the unique identifier for
the user given the remote user and idp

eppn EduPerson Principal Name Required*

eptid EduPerson Targeted ID Required*

idp the identity provider Required.

oidc Open ID Connect identifier Required*

open_id Open ID Required*

remote_user remote user Required*

* = at least one of the values must be present.

Response key/values pairs

Key Value Comment

status OK, UserNotFound,
ActionNotFound

user_uid the unique identifier

A complete response, for example:
HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: application/x-www-form-urlencoded
Transfer-Encoding: chunked

http://localhost:8080/delegation/dbService?action=getUserID&remote_user=bob@foo.edu&idp=urn%3Amace%3Aincommon%3Aaaf.edu
http://localhost:8080/delegation/dbService?action=getUserID&remote_user=bob@foo.edu&idp=urn%3Amace%3Aincommon%3Aaaf.edu
http://localhost:8080/delegation/dbService?action=getUserID&remote_user=bob@foo.edu&idp=urn%3Amace%3Aincommon%3Aaaf.edu
http://localhost:8080/delegation/dbService?action=getUserID&remote_user=bob@foo.edu&idp=urn%3Amace%3Aincommon%3Auiuc.edu
http://localhost:8080/delegation/dbService?action=getUserID&remote_user=bob@foo.edu&idp=urn%3Amace%3Aincommon%3Auiuc.edu
http://localhost:8080/delegation/dbService?action=getUserID&remote_user=bob@foo.edu&idp=urn%3Amace%3Aincommon%3Auiuc.edu
http://localhost:8080/delegation/dbService?action=getUserID&remote_user=bob@foo.edu&idp=urn%3Amace%3Aincommon%3Auiuc.edu
http://localhost:8080/delegation/dbService?action=getUserID&remote_user=bob@foo.edu&idp=urn%3Amace%3Aincommon%3Auiuc.edu

Date: Fri, 19 Nov 2010 22:51:55 GMT

48
status=OK
user_uid=https%3A%2F%2Fcilogon.org%2FserverA%2Fusers%2F1803

See also:getUser(user_uid), getUser(remoteUser…), getUserID, hasUser, removeUser

hasUser(user_uid)
What’s it do:This will check if a user with a given uid is in the system,

Request key/value pairs

Key Value Comment

action hasUser

user_uid The unique identifier for the
user

Required

Response key/value pairs

Key Value Comment

status User exists
user not found
missing parameter

Note that ok is not a response
from this call.

See also: getUser(uiser_uid), getUser(remoteUser…), getUser(user_uid), removeUser(user_uid)

removeUser(user_uid)
What’s it do: Removes the user from the store, archiving it beforehand.
Example:
Request: http://localhost:8080/delegation/dbService?
action=removeUser&user_uid=https%3a%2f%2fcilogon.org%2fserverA%2fusers%2f2133

Body of response:
status=0

Request key/value pairs

Key Value Comment

action removeUser Required.

user_uid The user’s unique identifier Required

http://www.google.com/url?q=http%3A%2F%2Flocalhost%3A8080%2Fdelegation%2FdbService%3Faction%3DgetUser%26remote_user%3Dbob@foo.edu%26https%3A%2F%2Fcilogon.org%2FserverA%2Fusers%2F2133%26first_name%3Dbob%26last_name%3Dsmith%26email%3Dbob&sa=D&sntz=1&usg=AFQjCNFC3bI4LbKUUSxA-zDo_YLvk_e18w
http://www.google.com/url?q=http%3A%2F%2Flocalhost%3A8080%2Fdelegation%2FdbService%3Faction%3DgetUser%26remote_user%3Dbob@foo.edu%26https%3A%2F%2Fcilogon.org%2FserverA%2Fusers%2F2133%26first_name%3Dbob%26last_name%3Dsmith%26email%3Dbob&sa=D&sntz=1&usg=AFQjCNFC3bI4LbKUUSxA-zDo_YLvk_e18w

Response key/value pairs

Key Value Comment

status OK, ActionNotFound,
MissingParameter,
DuplicateParameter,
UserNotFoundError

If the asserted user is not in
the store, an error is returned.

See also: getUser(uiser_uid), getUser(remoteUser…), getUser(user_uid), hasUser(user_uid)

setAllIDPs
What’s it do: Save the entire given list. This replaces the current list of IDPs.
Note:This will not save an empty list of IDPs. If there is an error, this will try to rollback the save.
Example: (With url encoding)
http://localhost:8080/delegation/dbService?action=setAllIdps&idp_uid=urn%253Aidentity
%252Fprov%252F1290201592400&idp_uid=urn%253Aidentity%252Fprov%252F1290201595564

Request key/value pairs

Key Value Comment

action setAllIdps Required.

idp_uid A url encoded identity provider Required (multiples allowed)

Response key/value pairs

Key Value Comment

status OK, ActionNotFound, MissingParameter A missing parameter
exception occurs if no idps
are supplied.

See also: getAllIDPS

setTransactionState
What’s it do? This sets basic information in a transaction during the user’s initial logon. It sets the
user uid in the transaction.

Request key/value pairs

Key Value Comment

action setTransactionState Required

auth_time The timestamp when the user
uathenticated

This is in milliseconds

cilogon_info The username MyProxy expects When getting x509 certs only.

code The authorization grant This is the unique identifier for

the transaction

loa Level of assurance

user_uid Unique user id

Response key/value pairs

Key Value Comment

status Ok,
missing argument,
expired token
transaction not found
QDL error
QDL runtime error

Missing argument is if the code
is missing

See also: createTransaction, setPortalParameters setTwoFactorInfo, getTwoFactorInfo

setTwoFactorInfo(userid, twoFactorInfo)
What’s it do? Set the two factor information for the given user id.
Note: The two factor information is simply an opaque string. No parsing or other processing of it
will be done.

Request key/value pairs

Key Value Comment

action setTwoFactorInfo

two_factor String Opaque string. No processing
of any sort done. This is not
assumed to be binary.

user_uid user identifier

Response key/value pairs

Key Value Comment

status ok, user not found

See also: getTwoFactorInfo

userCodeApproved(user_code)
What’s it do? This is used in the device flow. It will approve the code (allowing the user to get a
token). It may also unapprove a user code. Normally you check the user code before approving it.

Request key/value pairs

Key Value Comment

action userCodeApproved Required

approved 0 unapprove
1 approve (default)

Optional. If not present,
approve the code.

user_code The user code generated by the
system

Required.

Reponse key/value pairs

Key Value Comment

status Ok
missing parameter
transaction not found
expired user code

See also: checkUserCode

 Appendix
The basic philosophy is that even number indicate some sort of success + information, odd numbers
represent that an error has happened.

List of success codes
NAME Hex Decimal
STATUS_OK 0x0 0
STATUS_NEW_USER 0x2 2
STATUS_USER_SERIAL_STRING_UPDATED 0x4 4
STATUS_USER_NOT_FOUND 0x6 6
STATUS_USER_EXISTS 0x8 8
STATUS_IPD_UPDATED 0xA 10

Alphabetical table of error codes
NAME Hex Decimal
STATUS_ACTION_NOT_FOUND 0x1 1
STATUS_CLIENT_NOT_FOUND 0xFFFFF 1048575
STATUS_CREATE_TRANSACTION_FAILED 0x10005 65541
STATUS_DUPLICATE_ARGUMENT 0xFFFF1 1048561
STATUS_EPTID_MISMATCH 0x100001 1048577
STATUS_EXPIRED_TOKEN 0x10003 65539
STATUS_IDP_SAVE_FAILED 0xFFFA7 1048487
STATUS_INTERNAL_ERROR 0xFFFF3 1048563
STATUS_MALFORMED_INPUT 0xFFFF7 1048567
STATUS_MALFORMED_SCOPE 0x10013 65555
STATUS_MISSING_ARGUMENT 0xFFFF9 1048569
STATUS_MISSING_CLIENT_ID 0x10009 65545
STATUS_NO_IDENTITY_PROVIDER 0xFFFFD 1048573
STATUS_NO_REMOTE_USER 0xFFFFB 1048571
STATUS_NO_SCOPES 0x10011 65553
STATUS_PAIRWISE_ID_MISMATCH 0x100003 1048579
STATUS_QDL_ERROR 0x100007 1048583
STATUS_QDL_RUNTIME_ERROR 0x100009 1048585
STATUS_SAVE_IDP_FAILED 0xFFFF5 1048565

STATUS_SERVICE_UNAVAILABLE 0x10015 65557
STATUS_SUBJECT_ID_MISMATCH 0x100005 1048581
STATUS_TRANSACTION_NOT_FOUND 0x10001 65537
STATUS_TRANSACTION_NOT_FOUND 0xFFFA5 1048485
STATUS_UNAPPROVED_CLIENT 0x1000F 65551
STATUS_UNKNOWN_CLIENT 0x1000D 65549
STATUS_USER_EXISTS_ERROR 0xFFFA1 1048481
STATUS_USER_NOT_FOUND_ERROR 0xFFFA3 1048483

Error codes sorted by numeric value:

Hex Name Decimal
0x1 STATUS_ACTION_NOT_FOUND 1
0x10001 STATUS_TRANSACTION_NOT_FOUND 65537
0x10003 STATUS_EXPIRED_TOKEN 65539
0x10005 STATUS_CREATE_TRANSACTION_FAILED 65541
0x10009 STATUS_MISSING_CLIENT_ID 65545
0x1000D STATUS_UNKNOWN_CLIENT 65549
0x1000F STATUS_UNAPPROVED_CLIENT 65551
0x10011 STATUS_NO_SCOPES 65553
0x10013 STATUS_MALFORMED_SCOPE 65555
0x10015 STATUS_SERVICE_UNAVAILABLE 65557
0xFFFA1 STATUS_USER_EXISTS_ERROR 1048481
0xFFFA3 STATUS_USER_NOT_FOUND_ERROR 1048483
0xFFFA5 STATUS_TRANSACTION_NOT_FOUND 1048485
0xFFFA7 STATUS_IDP_SAVE_FAILED 1048487
0xFFFF1 STATUS_DUPLICATE_ARGUMENT 1048561
0xFFFF3 STATUS_INTERNAL_ERROR 1048563
0xFFFF5 STATUS_SAVE_IDP_FAILED 1048565
0xFFFF7 STATUS_MALFORMED_INPUT 1048567
0xFFFF9 STATUS_MISSING_ARGUMENT 1048569
0xFFFFB STATUS_NO_REMOTE_USER 1048571
0xFFFFD STATUS_NO_IDENTITY_PROVIDER 1048573
0xFFFFF STATUS_CLIENT_NOT_FOUND 1048575
0x100001 STATUS_EPTID_MISMATCH 1048577
0x100003 STATUS_PAIRWISE_ID_MISMATCH 1048579
0x100005 STATUS_SUBJECT_ID_MISMATCH 1048581
0x100007 STATUS_QDL_ERROR 1048583
0x100009 STATUS_QDL_RUNTIME_ERROR 1048585

	Access to CILogon’s Persistent Store
	Basic Operation
	Making a request
	Format of a response from the server
	Status Codes and Error Conditions
	Date formatting

	The API Calls
	checkUserCode(user_code)
	Request key/value pairs.
	Response key/value pairs.

	createTransaction
	Request key/value pairs.
	Response key/value pairs.

	getAllIDPS
	Request key/value pairs
	Response key/value pairs

	getClient(client_id)
	Request key/value pairs
	Response key/value pairs

	getLastArchivedUser
	Request key/value pairs
	Response key/value pairs

	getPortalParameters
	Request key/value pairs
	Response key/value pairs

	getTwoFactorInfo(user_uid)
	Request key/value pairs
	Response key/value pairs

	getUser(user_uid)
	Request key/value pairs.
	Response key/value pairs

	getUser(remoteUser|EPPN|EPTID|OpenID|oicd, idp,...)
	Request key/value pairs
	Response key/value pairs

	getUserID
	Request key/value pairs.
	Response key/values pairs

	hasUser(user_uid)
	Request key/value pairs
	Response key/value pairs

	removeUser(user_uid)
	Request key/value pairs
	Response key/value pairs

	setAllIDPs
	Request key/value pairs
	Response key/value pairs

	setTransactionState
	Request key/value pairs
	Response key/value pairs

	setTwoFactorInfo(userid, twoFactorInfo)
	Request key/value pairs
	Response key/value pairs

	userCodeApproved(user_code)
	Request key/value pairs
	Reponse key/value pairs

	Appendix
	List of success codes
	Alphabetical table of error codes
	Error codes sorted by numeric value:

